跳到主要內容

[讀書章節心得]演算法星球-第一章:演算法星球

從分配補給的問題說起,由喬治‧丹齊格發展出單純形法(Simplex Algorithmus)試著解決這個問題。

這個解法也是解決線性規劃式以及離散程式的重要基石。而這也是演算法的一小部分而已。

演算法是由許多許多的簡單步驟所組成,而剛好電腦又擅長處理許多許多的簡單步驟。因此演算法能夠在電腦的運算下發揮它最大的威力。

由於電腦的處理能力有其發展極限所在,那演算法呢?

有個簡單的實驗:
1990有兩個團隊來解決同一個離散程式問題。
假設1990年代電腦使用1990年最佳演算法來解決問題速度為1的話:
A團隊經由時光旅行帶來2014年的最佳電腦,並使用1990的最佳演算法來解決問題
B團隊經由時光旅行帶來2014年的最佳演算法,並使用1990的最佳電腦來解決問題。

A團隊最後比原來的速度快了6500倍解決了問題,大致符合摩爾定律
B團隊則是比原來的速度快了87萬倍解決問題,可見得,演算法進步的幅度比電腦運算進步的速度快了數百倍。

這樣說來,演算法帶來的性能提升,是從無到有的,而這點可以成立的原因,是因為我們找出了更簡單省事的方法。

在現代網路連結與完善度的需求,也讓演算式解法持續成長。全球網路彼此連結的趨勢下,很快的我們發現,在小規模狀況能夠自然運作的事情,放大規模可能完全失效(量變造成質變);而完善度的需求(系統的資源必須要最佳的運用),這些都是讓演算法改良的動力。

當然,就像我們知道化學與機械的界線在哪邊一樣,演算法也有它的界線。

演算法的界線:

1. 演算法需要一個連結體幫它連結現實,這個連結體就是資訊的輸入,或稱為一個範例模式或是一個對於現實的了解。每個演算法的品質都會受限於其連接體(資訊輸入)的品質,了解這一點才能夠有意義的去使用演算法

2. 演算法的[決定],和社會科學所論述的決定並不相同,因為社會科學的決定著重的是其中的過程,而並非是結果,而演算法最終則是一個結果。因此演算法可以就細節來做出決定,藉此來協助一個社會大方向的決定成為現實。

3. 演算法的最重要界線,則是演算法思考的[核心構成要件]。硬體的發展會受到物理極限的限制,因此從[計算複雜性理論]來決定每種演算法對於特定問題花費的時間與功夫,直到這個問題被演算法解決所花的時間沒辦法再更進一步為止(沒有辦法更簡單了!)。

[計算複雜性理論]可以說是演算法星球中的萬有引力,演算法的改進可以讓人們跳得更高,但是引力仍然在那邊,它是個界限,可以被推移,但始終不會消失。

電腦中,負責處理CPU工作時間的演算法稱為Multilevel Feedback Queue,它的主要工作就是分派CPU的工作時間去處理不同的演算工作,隨著硬體進步,從單核心CPU進步到多核心CPU,這個演算法需要更進一步去分派CPU的工作時間,並且決定要讓哪個CPU去處理演算法工作。

生活上的例子來說,我們最熟悉的就是傳統電話簿的搜尋,在翻傳統電話簿時,翻到某一頁時,對於需要搜尋的號碼,有兩種選擇,向左翻或是向右找。而這個也是所謂決策樹在生活上的應用。而這個搜尋電話簿的例子也提示了一件事,對數是演算法中的營養肥料,當搜尋的數量每多增一倍時,我們的搜尋次數只需要多增加一次就可以了。

但這個例子中,電話簿是一個已經經過處理排序過的資料,那如果是處理一堆書本的排序呢?

譬如500本未經過排序的書,需要按書名排序上架,最本能的方式就是一本本去比較,那最多需要500*500= 25萬次的比較(Bubble sort)。

但如果分層比較呢?

將500本書分成一半到下一層比較,下一層在分成一半去比較,當分派了9層之後,就可以把所有書分成兩本兩本一組,最多需要500*9=4500次的比較動作(Merge Sort)。




留言

這個網誌中的熱門文章

[UML]學習筆記-循序圖型(Sequence Diagrams)-8

定義 如果說之前提到的物件圖型是描述一個時間點的系統運作的樣子(memory snapshot),那麼循序圖型就是表示系統要做某件事情的那段時間內,運作的樣子(一個連續的過程)。 循序圖的重點是在描述一件事情,以及系統要完成這件事情的一連串動作,也是一種軟體系統運作的動態圖型。 上圖就是一個循序圖型,而有下圖的解析。循序圖會以做的動作(任務)出發,並列出所以參與到的物件/類別。接下來由上到下就是動作與物件彼此間的順序運作關係。下圖可以清楚展示出物件與類別/任務的互動關係。 循序圖組成的元素 有以下元素組成 -物件節點(Object Node) -生命線(Lifeline) -活化區塊(Activation Box) -訊息(Message) -內部訊息 -解構物件 -迴圈 要建構循序圖,必須要確定要描述的任務為何。 確定任務後,就要列出任務會用到的物件(即為物件節點)。 物件節點 ***************************************************** public class TestThermos {      public static void main(String[] args) {          HotWaterContainer h = new HotWaterContainer( 2 );          CoolWaterContainer c = new CoolWaterContainer( 50 );          ThermosGui g = new ThermosGui();          Thermos t = new Thermos(h, c, g);      } } ******************************************************* 上面的程式片段就是在描述一件任務,那件任務就是模擬一個冷熱水開飲機。 一開始先畫出類別和物件的節點,可以很清楚地分出類別和物件的區別。 最前面要是為一個主程式或是匿名物件的話可以用Use case diagram的小人圖來代替。

[UML]學習筆記-狀態圖型(Statechart Diagrams)-10

定義 狀態圖型主要會應用到軟體系統中,某項任務的生命週期。任務的生命週期中,會有不同的狀態,藉由不同狀態的檢視,可以去檢查任務是否有未考慮的情況或是邏輯的謬誤。 上圖就是表示一個執行緒的生命週期,還有它本身的狀態變化。 另外,狀態的數量必須是有限的。 組成元素 狀態節點(State node) 狀態圖型主要使用兩個特定的符號來表示生命週期的開始與結束。 初始狀態(Initial State),使用實心黑色的圓形。 結束狀態(Final State),使用實心黑色的圓形,外層再包一圈空心的圓形。 除了開始和結束外,狀態節點就是表示生命週期的某一種狀態,它的節點內容包含兩個部分。 名稱區格(Name Compartment) 內部轉換區格(Internal Transition Compartment) 通常內部轉換區格會因簡化而省略。 下圖就是含有內部轉換區格的狀態圖型 接下來仔細解釋名稱區格以及內部轉換區格的定義 名稱區格 名稱區格的文字表示生命週期中的一個狀態,UML的規定並非必填,如果沒有填寫就稱為匿名狀態。 內部轉換區格 內部轉換區格主要用來表示狀態節點內部的轉換狀況,這個地方使用四個標籤來說明進入狀態節點後到離開狀態節點時,狀態節點內會做哪些動作。 entry: 進入狀態節點的動作 exit: 離開狀態節點時的動作 do: 停留在此狀態節點時執行的動作 自訂標籤: 使用下列格式來自訂標籤與動作 其實跟其他標籤格式差不多,除了標籤名稱外,就是有參數可以去填寫。 轉換(Transition) 在狀態圖型中,兩個狀態節點間的標示就稱為「轉換」,用來表示狀態節點間如何轉換過去的。 轉換標示的格式如下。 事件名稱: 通常會是物件/類別的方法名稱 參數: 可選擇性的宣告,就是傳遞給事件的參數 條件: 可選擇性地宣告,用來表示狀態轉換的條件 這邊用個修改紀錄的的狀態圖來做例子。 從這個例子可以看到[update record]的狀態可以經過update的事件後,來到達下一個狀態[record updated] 子狀態(Sub-State) 從之前開飲機的例子來說,狀態圖可以如下圖。

[UML]學習筆記-活動圖型(Activity Diagrams)-11(全系列結束)

定義 活動圖型是用來顯示軟體系統中特定的活動情形,和其他圖型最大的差異,就是它專注在「活動」上面,而不會去理會物件、類別相關的問題。 因此,活動圖型只關心活動的開始、過程、與結束,使用一般流程圖的方式來繪製就可以了。 譬如一個偵測溫度到自動加溫的活動流程。 活動圖型的用途 針對循序圖型中比較複雜的訊息傳遞加以說明 顯示狀態圖裡面較複雜的狀態轉換事件 說明合作圖型裡面的訊息 圖型組成的元素 活動圖型由下列的基本元素組成。 狀態與活動(State and Activity) 轉換(Transition) 分支(Branch) 分歧與結合(Fork and Join) 水道(Swimlane) 狀態與活動 狀態元素其實和狀態圖型中的開始與結束狀態是相同的,而活動則是圓角矩形來表示。 上圖如果轉成程式碼會是下面的樣子 轉換 轉換主要是一個箭號,用來連結活動圖型中的狀態與活動。只有在分支出來的箭頭才會在上面加上說明或是條件。 分支 分支會根據判斷式而導向不同的活動,分支後的轉換就需要加上說明或是條件。 水道 活動圖型中,活動流程可能很單純在一個方法或類別中就完成了,但是也有可能是由不同的角色去一起完成流程。 下圖是一個聊天的程式。 圖中,以Mary發訊息給[Chat Server]的流程來說,就需要使用不同的「水道」來區分不同角色所負責的活動。 水道也可以使用行為者標記來表示角色,這樣可以讓活動圖型更加清楚。像下圖就是是客戶去購買產品的活動流程。裡面的角色就包含了[客戶]、[服務中心]、以及[訂單系統] 分歧與結合 以聊天程式的客戶端來說,其實有同時執行兩個執行緒,一個是sender,用來傳送訊息,一個是receiver,用來接收chat server回傳的訊息,因此可以使用Fork來顯示這種同時進行的活動 在圖中,分岐的表示是使用一條粗黑線來分成兩個執行緒所做的事情。 結合的部分,就是要把分歧的活動再次結合成一個活動的表示方式。 上圖的計算機就是一個結合的典型例子,它裏頭的活動運作的加減乘除活動之後,均會顯示在一個統一的活動(螢幕顯示)上。 程式碼的